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ABSTRACT in new genomes still have no significant homology to known genes

) ) (1). For these genes, we must rely on computational methods of
This paper describes a new system, GLIMMER, for scoring the coding region to identify the genes. The best-known
finding genes in microbial genomes. In a series of tests program for this task is GeneMatR) (which uses a Markov chain
on Haemophilus influenzae , Helicobacter pylori and  model to score coding regions. GeneMark has been highly effective
other complete microbial genomes, this system has and was used in the.influenzaand more recent genome projects.
proven to be very accurate at locating virtually all the We have developed a new system, GLIMMER, that uses a technique
genes in these sequences, outperforming previous called interpolated Markov models (IMMs) to find coding regions
methods. A conservative estimate based on experiments in microbial sequences. IMMs are in principle more powerful than
on H.pylori and H.influenzae is that the system finds Markov chains, and the computational experiments described below
>97% of all genes. GLIMMER uses interpolated Markov demonstrate that they produce more accurate results when used tc
models (IMMs) as a framework for capturing find genes in bacterial DNA.
dependencies between nearby nucleotides in a DNA Markov models are a well-known tool for analyzing biological
sequence. An IMM-based method makes predictions sequence data, and the predominant model for microbial sequence
based on a variable context; i.e., a variable-length analysis is a fixed-order Markov cha)§). A fixed order Markov
oligomer in a DNA sequence. The context used by model predicts each base of a DNA sequence using a fixed number
GLIMMER changes depending on the local composition of preceding bases in the sequence. For exampifepai&r model,
of the sequence. As a result, GLIMMER is more flexible which is the basis of GeneMark, uses the five previous bases to
and more powerful than fixed-order Markov methods, predict the next base. However, learning such models accurately can
which have previously been the primary content-based be difficult when there is insufficient training data to accurately
technique for finding genes in microbial DNA. estimate the probability of each base occurring after every possible

combination of five preceding bases. In genetdf-arder Markov

INTRODUCTION model for DNA sequences require§ %1 probabilities to be

estimated from the training data (e.g., 4096 probabiliies for a

The number of new microbial genomes has dramatically increasB#l-order model). In order to estimate these probabilities, many
since the first genoméjaemophilus influenzaevas sequenced in  occurrences of all possiteners must be present in the data.
1995 (1). Ten whole genomes have been completed, and at least 3&n IMM overcomes this problem by combining probabilities
others are expected to be completed in the next two years. Thism contexts of varying lengths to make predictions, and by only
abundance of data demands new and highly accurate computatiargihg those contexts (oligomers) for which sufficient data are
analysis tools in order to explore these genomes and maximize thailable. In a typical microbial genome some 5mers will occur too
scientific knowledge gained from them. One of the first steps in thefrequently to give reliable estimates of the probability of the next
analysis of a microbial genome is the identification of all its genebase, while some 8mers may occur frequently enough to give very
Because these genomes tend to be gene-rich, typically containietiable estimates. In principle, using longer oligomers is always
90% coding sequence, the gene discovery problem takes orpraferable to using shorter ones, but only if sufficient data is
different character than it does in eukaryotic genomes, especiadlyailable to produce good probability estimates. An IMM uses a
higher eukaryotes whose genomes may have <10% coditigear combination of probabilities obtained from several lengths of
sequence. In particular, the most difficult problem is determiningligomers to make predictions, giving high weights to oligomers that
which of two or more overlapping open reading frames (orfpccur frequently and low weights to those that do not. Thus an IMM
represent true genes. Other difficult problems include identifying theses a longer context to make a prediction whenever possible, taking
start of translation and finding regulatory signals such as promoteadvantage of the greater accuracy produced by higher-order Markov
and terminators. models. Where the statistics on longer oligomers are insufficient to

The most reliable way to identify a gene in a new genome is fwoduce good estimates, an IMM can fall back on shorter oligomers
find a close homolog from another organism. This can be done todaymake its predictions.
very effectively using programs such as BLASYand FASTA {) Using IMMs we have developed a new system, called
to search all the entries in GenBank. However, many of the gern@&IMMER, to identify coding regions in microbial DNA.
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bases in the three codon positions. Even witf-ar@er model, the
ﬂ 202 frequency of g in codon position 1 will be different from its
c0.3 frequency in another frame, so even this very weak model has some
20.1 ability to identify the right reading frame for a gene.
0.4 In a Blorder model, the output of a state depends on the state
immediately previous; i.e., a base is dependent on the previous
Figure 1. Sample 1-state Markov model for simple sequence modeling. base. Thus instead of four probabilities in each state, we compute

sixteenp(ala), p(alc), ...,p(t[t). In order to score a new sequence,
GLIMMER uses a novel approach, based on frequency @he model considers two bases at a time, the current base and the
occurrence and predictive value, to determine the relative weighigevious one. Likewise, in #&0order model, the output of a state
of oligomers that vary in length from 1 to 8. After first creatingdepends on the two previous bases. So to predict a base in the thirc
IMMs for each of the six possible reading frames, GLIMMERcodon position with our®-order model, we look at the first and
then uses them to score entire orfs. When two high-scoring odgcond codon positions. To predict a base in the first codon
overlap, the overlap region is scored separately to determip@sition, the ?-order model looks at the second and third codon
which orf is more likely to be a gene. We have tested GLIMMERyositions in the previous codon.
using theH.influenzagHelicobacter pyloriandEscherichia coli Using the Markov models for each of the six possible frames plus
genomes and found that it is very accurate in identifying geneg,model of non-coding DNA, we can straightforwardly produce a
as we explain in Methods and Results. The system has recendiynple algorithm for finding genes. Simply score every orf using all
been used to find the genes in two newly completed genomegven models, and choose the model with the highest score. The
Borrelia burgdorfer the bacteria that causes Lyme diseaépénd  scores can be normalized so they represent the probability that a
Treponema pallidurthe bacteria that causes syphilis (Fratat,  sequence is coding. If the model corresponding to the true coding
manuscript in preparation). Annotation for these and otheggion in the correct frame scores the highest, then the orf can be
completed genomes will be available on the GLIMMER web sit¢abeled as a gene. This simple algorithm ignores the difficult

problem of how to handle overlapping genes, which we address in

INTERPOLATED MARKOV MODELS the Algorithm and System Design section, which contains the details
) of GLIMMER. (To be effective, an algorithm must do much more
Markov chains than this intentionally simple description. For example, all scores

Our probabilistic model of DNA sequences represents a sequenc&@yld be nearly equal, or the highest score could still be quite low,
a process that may be described as a sequence of random variaie&' @l90rithm needs to have a threshold score below which no
X1, X, ..., whereX; corresponds to positianin the sequence. Each '€910n is classified as coding.)
random variabl; takes a value from the set of bases,(g,}. The
probability that a variabl¥ takes will depend on the local context; |nterpolated models
that is, the bases immediately adjacent to the base at positlen
sometimes refer taa( ¢, g, } as the set of possibigatesthat a  In general, we would always like to use the highest-order Markov
variable can take. In other words, varialés in statea if X =a.  model possible. The higher-order model should always do at least
As an illustration, consider the simple example of a Markov models well as, and frequently better than, lower-order models. This
in Figurel. This 1-state model can be used to model any lengttan be explained by a simple example.
DNA sequence. In each position, the probability of a is 0.2. Thus theSuppose that the base in the third codon position depends only on
sequence aaaaa would have a probability oP(©.2)00032. Inthis the second codon position. Then we might observe in a given
way we can score any sequence by computing the probability tiyginome that Pglp) = 0.22; i.e., the probability of observing
it was generated by the model. adenine in the third codon position given that guanine occurs in the
A first order Markov chain is a sequence of random variablesecond is 0.22. This is a first-order dependency. Suppose that the
where the probability tha§ takes a particular value only dependsprior probability of adenine Pgpis 0.30. Clearly we will perform
on the preceding variabl_1. A k" order Markov chain is a better by using the first-order statistic, since adenine occurs less
natural generalization of this definition where the probabilityfrequently in the third position following guanine than it does
distribution ofX; depends only on thgreceding bases. Note that otherwise. Now consider using both the first and second codon
for DNA sequences a first-order Markov chain is specifiegositions to predictzaGiven our assumption that only the second
completely by a matrix of 16 probabilitiggala), p(alc), ...,p(t[t).  position matters, we should find that 4kfs) = P(&]|gp, X1), where
There are two essential computational issues that must keindicates any base in the first codon position. Thusther@er
considered in building and using these probabilistic modelsnodel will perform exactly the same as tifeotder model. If it
(i) the learning problem, which involves learning a good moddlrns out that the third codon position depends on both the first and
for coding regions in microbial DNA and (i) the evaluationsecond positions, then théi@rder model will perform better.
problem, which involves assigning a score to a new DNA The problem that arises in practice is that, as we move to higher
sequence that represents the likelihood that the sequenceolider models, the number of probabilities that we must estimate
coding. GLIMMER’s solutions to both these computationalfrom the data increases exponentially. For DNA sequence data, we
issues are described in the Interpolated models section belowneed to learn4" 1 probabilities in &-order Markov model. Our
To use a Markov chain model to find genes in microbial DNA, waix submodels actually neeet4k* 1 probabilities. So aorder
need to build at least six submodels, one for each of the possibhedel needs 24 576 probabilities. In a microbial genome such as
reading frames (three forward and three reverse). We can also bitildhfluenzaewith 1.8 million bases, we will observe each of the
a seventh, separate model for non-coding regions, though this is 4686 possible 6mers often enough to get accurate estimates for a
strictly necessary. Each model makes different predictions for tf#-order model, although for rare hexamers we may not have
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enough data. For &érder model, which requires probabilities for It is worth remarking that GLIMMER builds a non-homogenous

all 7mers, there are a substantial number of 7mers that do not ocistarkov model; i.e., different models are created for each of the three

sufficiently often, and for 7 and $-order models the problem is codon positions. This type of ‘3-periodic’ Markov chain was

worse. However, even forth®rder models, there are some introduced in GeneMarlks) to account for patterns that depend on

oligomers that occur often enough to be extremely useful predictotke reading frame.

We would like a Markov model that uses these higher-order statistics

whenever sufficient data is available. This is one of the ke

advantages of using an IMM. [Note that there exist other techniquéls' GORITHM AND SYSTEM DESIGN

to incorporate variable length predictive models8f We  Setting IMM parameters

experimented with these alternatives before converging on the

approach described here.] In this section we describe how GLIMMER computes the values
To be more precise, an IMM uses a combination of all thef the A parameters for thé&h-order IMM described in the

probabilities based on 0, 1, 2, k.previous bases, whekeis a  preceding section. In addition, we explain the solution to the

parameter given to the algorithm. In GLIMMER, we kise8. Thus  learning problem mentioned in the introduction. First, a set of

for oligomers that occur frequently, the IMM can use Bmo@ler ~ known coding sequences must be assembled into a training set.

model, while it might use &lBor even lower-order model for rare To be certain these are truly coding is somewhat problematic for

oligomers. In order to ‘smooth’ its predictions, an IMM usesa new genome. The solution we have adopted is to use only very

predictions from the lower-order models, where much more datal@gng orfs and sequences with homology to known genes from

available, to adjust the predictions made from higher-order modefgher organisms. These can easily be identifigdori without
During training, GLIMMER computes the probability of eachknowing anything else about the genome being analyzed.

base a, ¢, g, t, following dtmers for O< k < 8. Then, for each From the training set of genes, the frequencies of occurrence of

kmer it computes a weight to use in combining the predictions @lll possible substring patterns of length k ol are tabulated in

different order models. Details of the algorithm for computingeach of the six reading frames. (The last base in the substring

these weights are given in the Algorithm and system desigitefines the reading frame.) For simplicity, let us consider just a

section. Once the weights are computed, GLIMMER evaluategngle reading frame and u$g5) to denote the number of

new sequences by computing the probability that the middel occurrences of string (sequenc@)= 1S, .. . (This same

generated the sequere GM). This probability is computed as procedure is repeated for each of the six reading frames.) From

these frequencies we get initial estimates of the probability of

< bases; occurring given the context strirgyi, Sci+1, --.» -1,
PEM) = Z IMM (SJ denoted byg; (i.e., thei bases just previous to positigyn We
x=1 compute the probability of basggiven the previous bases as
whereS, is the oligomer ending at positianandn is the length f(S)
of the sequence. IMM(S), the 8-order interpolated Markov Pi(S) = P(sdSy) =
model score, is computed as Zbe{accjt}f(sx,i- b)

- . _ . The value oh;(S,) that we associate with(8&) can be regarded as
IMMI(S = AlSc-1) * (S + [1 ~AdSc- T « MMk - 1S a measure of our confidence in the accuracy of this value as an

whereA(S,_ 1) is the numeric weight associated with kneer  estimate of the true probability. GLIMMER uses two criteria to
ending at positior— 1 in the sequen&and R(S) is the estimate  determine A(S). The first of these is simply frequency of
obtained from the training data of the probability of the baseccurrence. If the number of occurrences of context Syjrig the
located ak in thekth-order model. Thus, thé"8order IMM score  training data exceeds a specific threshold value i@ is set to
of an oligomer is a linear combination of the predictions made b}.0. Thus, when there are sufficiently many sample occurrences of
the 8h, 7" and lesser-order models all the way down to the context string in the training data, then those sample probabilities
oth-order model, which is just the simple prior probabilities of aare used. The current default value for this threshold in GLIMMER
¢, g, t. The above equation is the solution to the evaluatiaa 400, which give§B5% confidence that the sample probabilities
problem mentioned in the introduction. are withint0.05 of the true probabilities from which the sample was
From this definition, it is clear that an IMM is in principle alwaystaken. (Other thresholds were tested experimentally, but none
preferable to a fixed-order Markov model. For example, by givingrovided any noticeable improvement.)
zero weights to all oligomers except 5mers, an IMM will perform When there are insufficiently many sample occurrences of a
identically to a %-order Markov model. However, if there are anycontext string to estimate the probability of the next base with
6mers that occur frequently enough in the training data to be useftnfidence, we employ an additional criterion to assiguaue.
and if these 6mers predict a different distribution of bases than tRer a given context strir§ ; of lengthi, we compare the observed
corresponding 5mers, then the IMM will outperform thecder  frequencies of the following basé i, a),f(S;i, ¢), (S, g) and
model. Not only longer but also shorter oligomers will help imprové(S ;, t), with the previously calculated IMM probabilities using the
performance: even if aorder model is better than &-érder  next shorter context, IMM; (& -1, @), IMM_1 (Sj-1, ©), IMMi_1
model, there may be some rare Smers for which insufficient data &1, g) and IMM_1 (&1, t). Using ax? test, we determine how
available. A $-order model has no choice but to use the unreliablikely it is that the four observed frequencies are consistent with the
predictions from these rare 5mers, but an IMM can fall back on tH®M values from the next shorter context. When the frequencies
much more reliable predictions made by the 4mers in such caséiffer significantly from the IMM values, we prefer to use them as
The experiments described below indicate that both of thesetter predictors of the next base, i.e., give them a higialue.
phenomena occur and both serve to give IMMs an advantage o@anversely, when the frequencies are consistent with the IMM
fixed-order Markov models. values, they offer little predictive value and hence we give them a
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lower A value. Specifically, we calculate tgéconfidences that the  both of these criteria: (i) the orf is >500 bases long, which provides
frequencies are not consistent with the IMM probabilities and sethe basis for a statistical argument that the gene is highly likely to be
00 a coding region, since orfs of this length almost never occur in
WS = {-¢ ' ¢ b < 0.50 non-coding DNA. (ii) The orf does not overlap any other orf longer
-1 4002 befacgy | (152---SD) = 0.50 than 500 bp. Using these criteria, we were able to collect 1168 orfs
) . o from the current version oH.influenzae (GenBank accession
Thus, we assign higher values based on a combination of| 42023), which contains 1717 annotated genes. Thirty-two of these
predictive value, determined by significance, and accuracy, did not match CDS entries, but we included them anyway. This
determined by frequency of occurrence. Phislue now defines  gjves us a completely automatic training procedure for GLIMMER,
the probabilities IMM (S;i, b) forb U {a, ¢, g, t} according to  requiring no human intervention.
equation 1. [Other methods of assigningalues for IMMs have  Thjs experiment compared GLIMMER's IMM to a conventional
been developed (9,10). We experimented with these methodsfiied-length Markov model on the.influenzaegenome data. We
addition to the one described above, and comparative results flllowed identical training protocols for both the IMM and a
be given in a follow up paper. Roberfsl) cited in (2) also  fixed-length #-order Markov model. [This %order Markov
describes a method for bUIIdlng nonuniform Markov mOdelS.] model is the same model as that used by GenemﬂqCause we
did not have access to the GeneMark source code, we could not

The GLIMMER system retrain that system on our data, so we implemented our own model

. ) based on published descriptions of GeneMark.] All post-processing
The GLIMMER system consists of two programs. The first of thesg, resolve overlaps was also identical for both methods. Thus the
called build-imm, takes an input set of sequences and builds a8tk gifference was the model itself: in one case an interpolated
outputs the IMM for them as described above. These sequences g?{kov model, and in the other casetadsder Markov model.

be complete genes or just partial orfs. The second program, caligfie that we also implementel? and @-order Markov models,
glimmer, then uses this IMM fo identify putative genes in an entirg,+ the #1.order model performed better than these. The results are
genome. Glimmer does not use sliding windows to score regiong,own in Tablé.

Instead, it first identifies all orfs longer than some specified thresho _ ‘

value, and scores each one in all six reading frames. Those that s¢8Ré 1. Comparison of the IMM model used in GLIMMER to &-rder

higher than a designated threshold in the correct reading frame ¥fgkov model
then selected for further processing. These selected orfs are thgigg

- . . . Genes Genes Additional
examined for overlaps. If two orfs in different reading frames found missed genes
overlap (by more than some designated minimum length), th%LIMMERIMM 1680 (07.8% 37 209
overlapping region alone is scored separately. The overlap regions_q,ger Markov 1574 (91.7%) 143 104

six reading frame scores are then compared with those of the two

overlapping orfs to see which frame scores highest. In general, wiige first column indicates how many of the 1717 annotated geheffinenzae

a longer orf overlaps a shorter orf and the overlap region scoreere found by each algorithm. The ‘additional genes’ column shows how many extra
highest in the reading frame of the longer orf, then the shorter orfd8nes. not included in the 1717 annotated entries, were called genes by each method

eliminated as a gene candidate. The final output of the program isof the 37 genes missed by GLIMMER's IMM, only one was

a list of putative gene coordinates in the genome, together Witgund by the B-order model. In contrast, the IMM found 107 genes
notations for each one that may have had a suspicious overlap Wit the 8' order model missed. For this run, a pre-set threshold
another gene candidate. These ‘suspect’ gene candidates (usuaflyedented both systems from finding genes shorter than 100 bp, and
very small percentage of the total) can then be examined manuajly of the 37 genes missed by GLIMMER were below this threshold.
to determine if they are in fact genes. Samples of GLIMMERYf the remaining 31 genes, only one was longer than 500 bp. Finally,
outputs for theH.pylori genome are available on the GLIMMER note that this was a completely ‘self-trained” experiment in which
web site at http://www.cs.jhu.edu/labs/compbio/glimmer.htmlgatabase matches were not used for training; augmenting the training
which also contains results fd.coli and H.influenzae The  set with these additional genes will almost certainly improve
GLIMMER system, including all source code, is freely availablgyerformance further. Of the 209 additional genes called by the

from this site. system, some can be eliminated from consideration by comparison
with functional RNA sequences. The remainder may or may not be
METHODS AND RESULTS expressed genes, and further biological evidence is required to

. .. resolve these genes.
To evaluate the effectiveness of our IMM, we compared it to a

conventional fixed-order mod_el on data frolfhinfluenzae ?ene finding accuracy orH.pylori
genome. As a second confirming test, we ran it on the recently _ _ o

sequencedi.pylori genome and did a careful comparison of thd-inally, in a test designed to run the system as it will be used on new,
genes found by GLIMMER to those annotated in the publi€omplete genomes, we ran GLIMMER on the complete, recently

databases and to the genes found by the GeneMark system. sequenced genome bf.pylori (13), the bacterium that causes
stomach ulcers. A training set of brute force orfs that were >500 nt

were collected from the complete genomid giylori. (This training

set was collected from the genome without reference to any
Haemophilus influenzdeas many putative genes whose existencannotation, exactly as it would be for a brand new sequence.) The
has not been confirmed biologically. For this experiment, we wantedsulting IMM model was then compared to the annotated set of
to train GLIMMER using only genes that had a very high likelihoodyenes identified for this organism. The 1590 genes annotated for
of being real; therefore, we chose for training a set of orfs that satigfielicobacterwere identified by integrating the following sets of

Comparison onH.influenzae
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information: (i) evaluating brute force orfs for protein-levelbe re-run repeatedly until it converges. This iterative algorithm will
sequence similarity matches to the public archives, (ii) predictirgso be available as an option in the GLIMMER system.

coding regions using the GeneMark system and (i) collecting

‘intergenic’ orfs that were found between the genes with databaS®NCLUSION

matches and the genes called by GeneMark. We consider the _ _ ) o
H.pylori sequence annotation to have been intensively evaluated Byaluating the accuracy of a microbial gene finder is difficult,

the research community, and as yet, no unidentified genes have bEEFRUSE the genes annotated in GenBank do not always have
reported since thiel.pylori publication. biological evidence to back up their existence. As the annotation

The annotated genes were compared to the results of llﬂt(:écomes more stable, more accurate estimates of accuracy will be

. ible. At the same time, better gene finders should result because
GLIMMER algorithm, and 1548 of the 1590 genes were found tr%os& . e S ;
have been correctly identified. An additional 314 potential orfs weri available training degta will improve. Although GLIMMER'S
found by the system in thel.pylori genome. Some of these ScniSitivity is nearing 100% already, there are several important %reas
additional genes can be eliminated by discarding those that conflfétdfumre improvements. One is to improve its specificity by

with ribosomal and transfer RNAs. but the remainder cannot ucing the number of false positives (after first confirming that the
ruled out as authentic genes without further biological evidence. T%ﬁ'uannotated genes found by the System are in fact false). Specificity

) ~ ; ; Sn already be reduced substantially, at the cost of slightly reducin
set of 42 unidentified genes, representing a potential false nega@@nsitivity, )t/)y increasing the minima/m length orf that%;LI}/MMER 9

rate of 2.6%, were _examlned further. Nineteen of these genes_frgml consider as a gene. Another is to incorporate separate pattern
the H.pylori annotation were under 100 nt in length, and possibly\aycis algorithms that will allow the system to find promoters,
below the length for meaningful detection by compositionalnnancers, terminators and other signals that occur in intergenic
methods. Orfs that have matches to proteins in the current puliigyions, Accurate location of these signals is an important problem
archives serve as the most reliable and independent verification ek own right, and a system that integrates the content scoring
an orf is an authentic gene; of these orfs, only seven were preseriiiyroach of GLIMMER with a good signal identification algorithm

the 42 genes that GLIMMER did not identify. This suggests ghould produce better results than either approach could
minimal false negative rate of 0.44% for GLIMMER. independently.

Note that for this experiment, GLIMMER used a minimum gene
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