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ABSTRACT

GeneSplicer is a new, flexible system for detecting
splice sites in the genomic DNA of various eukaryotes.
The system has been tested successfully using DNA
from two reference organisms: the model plant
Arabidopsis thaliana and human. It was compared to
six programs representing the leading splice site
detectors for each of these species: NetPlantGene,
NetGene2, HSPL, NNSplice, GENIO and SpliceView.
In each case GeneSplicer performed comparably to
the best alternative, in terms of both accuracy and
computational efficiency.

INTRODUCTION

Identification of protein coding genes in genomic DNA de novo
requires that a program finds the locations of the start codons,
all the exons and introns and the stop codon for each gene. The
5′ boundary or donor site of introns in most eukaryotes usually
contains the dinucleotide GT (GU in pre-mRNA), while the 3′
boundary or acceptor site contains the dinucleotide AG. In
addition to these dimers, a pyrimidine-rich region precedes the
AG at the acceptor site, a shorter consensus follows the GT at
the donor site, and a very weak consensus sequence appears at
the branch point, ∼30 nt upstream from the acceptor site. These
consensus sequences are recognized by a complex of proteins
and small nuclear RNAs, known collectively as the spliceosome,
which splices out the introns from pre-mRNA and produces the
mature mRNA transcript. A number of computational methods
have been developed to identify these splice sites, including
both stand-alone splice site finders and gene finders, which
identify splice sites as a subroutine. The performance of most
gene finding systems is greatly influenced by their accuracy at
determining splice sites. In theory, a program that could
correctly identify all splice sites would do a nearly perfect job
of ab initio gene finding, since it would identify all protein
coding regions correctly (with the chance of a small error in the
identification of the correct start site). Any reduction in the
number of potential sites being considered by a gene finder will
significantly reduce the number of alternative ways of parsing a
DNA sequence into exons and introns, and therefore makes
overall gene prediction easier.

Approximately 30% of the genes that are annotated in newly
sequenced genomes such as Arabidopsis thaliana are, at
present, purely the result of computational predictions. More
accurate gene prediction is essential for future experimental

work, which will attempt to validate and characterize these
genes. As the genome sequences reach completion, the amount
of training data increases too, making it possible to re-train
gene and splice site predictors and improve their performance.

We have developed a new computational tool for detecting
splice sites in eukaryotic mRNA by combining several techniques
that have already proven successful in characterizing the
patterns around the donor and acceptor sites. We use a decision
tree method called maximal dependence decomposition
(MDD), first introduced by Burge and Karlin (1), and enhance
it with Markov models that capture additional dependencies
among neighboring bases in a region around the splice site.
This method considers only a small window around the splice
junctions, which contains most of the information recognized
by the spliceosome. Our algorithm also takes advantage of the
fact that the coding and non-coding sequences switch at the
splice junction, and this switch can sometimes be detected by
considering sequence statistics in a larger window. In addition,
by applying the local score optimality feature developed by
Brendel and Kleffe (2), we increased the overall performance
of the splice site detection system.

For the purpose of training and testing the new system, we
considered two organisms for which extensive genomic
sequence and confirmed genes are available: the model plant,
A.thaliana, and human. We collected data sets containing 1323
genes for A.thaliana and 1115 genes for human to use in
training and testing; these are described further below. The
result of this study is a new system, called GeneSplicer, a
statistical method that predicts splice sites by integrating
multiple sources of evidence. (GeneSplicer is freely available;
for details contact the corresponding author.)

Algorithm description

When performed in the cell, pre-mRNA splicing is not a purely
deterministic process. Some transcripts are spliced into
multiple alternative products; experimental evidence indicates
that weak splice sites become active when mutations occur in
nearby sites (3); and mis-splicing occurs at an unknown rate.
Nonetheless, the cell is the best machinery we have for
splicing, and therefore an algorithmic approach should first of
all try to reproduce the biological mechanisms. Although the
intermediates, products and reaction mechanism of splicing
were characterized some years ago, pre-mRNA structural
features that are important for this process have only just begun
to be investigated (4), and signals such as exon splicing
enhancers (short consensus sequences within exons) are still
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poorly understood. As a consequence, the best splice site
algorithms available today employ a combination of simple
biological modeling and more sophisticated statistical
methods.

When designing GeneSplicer, we tried to make use of the
moderately successful techniques that were used to characterize
the sequences around the splice sites in our previous gene
finders (5,6). To improve the splice site detection, we
combined the Markov modeling techniques described by
Salzberg et al. (5,6) with the MDD described by Burge and
Karlin (1) using the following algorithm.

The method begins with a set D of N aligned DNA sequences
of length k, extracted from a set of donor (respectively
acceptor) sites. For each of the k positions, let the most
frequent base at that position be the consensus base. The
variable Ci will be 1 if the nucleotide at position i matches the
consensus at position i, 0 otherwise.

Next, compute the χ2 statistics between the variables Ci and
Xj (which identifies the nucleotide at position j), for each i,j
pair with i ≠ j. If strong dependencies are detected (defined as a χ2

value of at least 16.3, corresponding to a cutoff level of P = 0.001
with 3 degrees of freedom) between non-adjacent positions,
then proceed as described by Burge and Karlin (1). (i)
Compute the sum

for each position i. (ii) Choose i1 such that Si1 is maximal, and
partition D into two subsets, Di1 containing all sequences with
the consensus nucleotide at position i1, and Di2 = D – Di1
containing the remaining sequences. (iii) Recursively repeat
steps 1 and 2 on each of the subsets Di1 and Di2 (thus, building
a binary decision tree), until either: the k-1 level of the tree is
reached; no significant dependencies are detected; or the
number of the sequences in the subtree is too small for reliable
Markov models to be constructed for them.

Each leaf of the tree thus constructed now contains a subset
of the donor (or acceptor) sites used for training. We then
construct first-order Markov chain models using a 16 base
region around the donor sites and a 29 base region around the
acceptor sites. (Higher-order Markov chains are always
preferable when sufficient data is available; the decision to use
a first-order Markov chain was made based on the amount of
training data.) A set of ‘false’ splice sites were created from a
large number of randomly chosen false sites, defined as GT
and AG dinucleotides from the training data that did not
correspond to true sites.

Finally, the score of a potential splice site is computed as the
difference between the log-odds score returned for that
sequence by the true Markov model and the score computed by
the false Markov model. Details on how to compute the score
of a Markov chain model for splice sites have been explained
elsewhere (5,6).

In order to improve further the splice site detection mechanism
we added another technique to the system. Based on the observation
that a splice site is always surrounded by a coding region and a
non-coding region, we constructed two second-order Markov
models, one to model a coding region and another one to model
a non-coding region near the splice site. We collected
sequences of 80 bp on either side of the true splice sites,
grouped them into coding or non-coding sets and then used

these data to build the models. (Note that for exons and introns
<80 bp, this procedure will include sequences from both
coding and non-coding regions on the same side of the splice
site. This event is relatively rare, and only slightly alters the
Markov probabilities; the average exon and intron lengths in
the A.thaliana data set are ∼216 and 157 bp, respectively.) The
score of a splice site located at position k in the DNA sequence
was then computed according to the following formulae:

S(k) = Scomb(k,16) + [Scod(k – 80) – Snoncod(k – 80)] +
[Snoncod(k + 1) – Scod(k + 1)]

where k is the position of a donor site and:

S(k) = Scomb(k,29) + [Snoncod(k – 80) – Scod(k – 80)] +
[Scod(k + 1) – Snoncod(k + 1)]

where k is the position of an acceptor site.
Here, Scomb(k,i) is the the score computed with our combined

algorithm using MDD with Markov models at the leaf nodes of
the tree, Scod(j) is the score of the coding Markov model
computed on an 80 base substring starting at position j, and
Snoncod(j) is the score of the non-coding Markov model
computed on an 80 base substring starting at position j.

We used the training data to set a threshold for the splice site
score computed by these formulae. We further eliminated a
significant number of false positives by keeping only the splice
sites whose score was maximal within a 60 bp DNA window,
similarly to the locally optimal splice sites used by Brendel and
Kleffe (2).

RESULTS AND DISCUSSION

To evaluate GeneSplicer, we needed databases of confirmed
genes in which the splicing patterns were accurately annotated.
We collected data and tested the system on DNA sequences
from the A.thaliana and human genomes. These results are
described below.

Data collection

The Arabidopsis database for evaluating GeneSplicer was
constructed by searching all the genes from chromosome (chr)
II as of late 1999 (7) against a non-redundant protein database
and an EST database. We retained in the data only those genes
confirmed by homology across their full length, and we care-
fully checked the borders of the genes for non-consensus splice
sites or other evidence of error. This process resulted in a set of
1131 genes. We then added to this set the 474 genes collected
from GenBank and used to train an Arabidopsis version of
Genscan (C.Burge, personal communication). These 474 genes
span all five Arabidopsis chromosomes, and 23 were already
included in the chr II data. After eliminating these duplicates,
we were left with 1582 genes. This number was further
reduced by performing pairwise alignments between all genes
to remove homologous sequences. This resulted in a non-
redundant set of 1323 genes that was used for training and
testing the algorithm. This database contains 5490 splice sites
of each type (acceptor or donor). We also collected all the
‘false’ splice sites in the data, defined as sequences containing
the consensus GT or AG dinucleotide that were not annotated
as splice sites. The numbers of true and false splice sites present in
the data are shown in Table 1. All the results in this paper refer
to standard GT/AG splice sites, leaving detection of the much
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less frequent non-consensus splice sites as a feature to be
implemented in the future. Therefore some of the results below
indicate a difference between the number of donor and
acceptor sites.

For our evaluation of GeneSplicer on human DNA, we used
the Exon–Intron Database (8) to collect a confirmed gene set.
We extracted only fully annotated human genes with experi-
mental supporting evidence. After removing genes with
unknown introns, we had 2532 genes, which were further
screened for homologous sequences using the same technique
as the one we used for A.thaliana. This process resulted in a
non-redundant data set of 1115 genes. (Note that because EID
is built automatically by parsing GenBank records, there are
likely to be incorrectly annotated genes included in this data
set.) The total number of true and false splice sites for this data
set is shown in Table 1.

We used a 5-fold cross-validation in all our experiments to
estimate the splice site detection accuracy, as follows: (i) the
data set was randomly divided into five equal-sized disjoint
partitions. (ii) For each partition, we used all data outside the
partition to train GeneSplicer. We then tested the program on
the data in the partition. (iii) The reported accuracy represents
the average of the accuracies computed on all five partitions.

GeneSplicer on A.thaliana

The accuracy of GeneSplicer computed on all five partitions
used in the cross-validation experiment for several false nega-
tive rates of the splice sites is shown in Table 2, which shows
the relationship between false negative and false positive rates.
In order to evaluate GeneSplicer in context, we compared its
results with those of NetPlantGene, a well-known splice site
detection system for A.thaliana (9). We also analyzed the
results of NetGene2 (9,10; http://genome.cbs.dtu.dk/services/
NetGene2/), a newer system which was designed to replace
NetPlantGene. Since the latter system was not strictly an
improvement when tested on our data set, we report here
results from both systems. All genes in the A.thaliana chr II
subset of our non-redundant data set (Table 1) were submitted to be
analyzed by the Web servers at http://genome.cbs.dtu.dk/services/
NetGene2/ for NetGene2 and at http://genome.cbs.dtu.dk/
services/NetPGene/ for NetPlantGene. We computed the
number of false negatives and false positives returned by these
servers for this data. Because all of the genes in our data set are
publicly available from GenBank, and because we do not have
the ability to re-train either of these systems, we cannot
discriminate between those genes that were included in the

Table 1. Number of genes, true and false splice sites in the data sets for A.thaliana and human

Database Genes Donor sites Acceptor sites False donors False acceptors

Arabidopsis 1323 5440 5488 351 615 417 939

Arabidopsis, chr II only 928 3354 3391 181 659 221 491

Human 1115 5733 5733 478 983 650 099

Table 2. False negative and false positive rates for acceptor and donor site detection on five equal-sized disjoint partitions of a 1323 gene A.thaliana data set

True sites missed (%) False Positives (%)

Part. 1 Part. 2 Part. 3 Part. 4 Part. 5 Average

Acceptor site detection (5488 true sites) 3 13.64 8.06 9.23 11.04 16.46 11.7

5 5.66 4.05 4.88 4.71 4.95 4.9

7 4.03 2.87 3.31 3.08 3.38 3.3

8 3.48 2.51 3.05 2.74 2.73 2.9

10 2.93 2.04 2.38 2.39 2.38 2.4

15 1.71 1.39 1.62 1.75 1.69 1.6

20 1.12 0.99 1.06 1.23 1.26 1.1

30 0.68 0.58 0.61 0.70 0.71 0.7

Donor site detection (5440 true sites) 3 6.37 4.54 3.75 3.61 5.04 4.7

5 3.36 2.85 2.66 2.52 2.83 2.8

7 1.73 2.32 1.88 1.80 1.87 1.9

8 1.61 2.07 1.71 1.58 1.65 1.7

10 1.36 1.50 1.23 1.28 1.38 1.4

15 0.95 0.95 0.83 0.97 0.87 0.9

20 0.66 0.60 0.61 0.69 0.62 0.6

30 0.41 0.44 0.36 0.41 0.40 0.4
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training sets of NetGene2 or NetPlantGene. Therefore, we
present GeneSplicer results for both the training and test data.

To make the comparison appropriate, we computed a
complete ROC (receiver operating characteristics) plot for
GeneSplicer. This plot contains all combinations of values of
sensitivity and specificity. We can then compare GeneSplicer
to each of the other systems by setting its false negative rate to
be the same, and then comparing the differences in false
positives. This is shown in Table 3.

If we set the threshold in GeneSplicer to have the same
sensitivity (missing the same number of true splice sites) as
NetPlantGene, then GeneSplicer reports 38% fewer falsely
predicted acceptor sites and 14% fewer false donor sites,
considering GeneSplicer’s performance only on the test set.
When compared to NetGene2, again at the same level of
sensitivity, GeneSplicer introduced slightly more false positive
acceptor sites (1.6 versus 1.5%) and 15% fewer false donor
sites. One can also see from Table 3 that NetGene2 misses
many more true acceptor sites than NetPlantGene (15.4 versus
9.5%), and somewhat fewer true donor sites (5.9 versus 7.7%).

The false negative rate is a fully adjustable parameter in Gene-
Splicer; by default it is currently set so that it will miss
appoximately the same number of donor sites as NetGene2 and
the same number of acceptor sites as NetPlantGene.

GeneSplicer on human genes

Next, we trained GeneSplicer on our non-redundant human
data set, and measured its accuracy using the 5-fold cross-
validation method described above. The performance of Gene-
Splicer on this database is presented in Table 4.

The splice site algorithms for plant genomes have not all
been trained on human data, and conversely the algorithms for
human have not been trained on plants. Therefore, in order to
conduct a comparison on the human data, we had to consider a
different set of programs from those used above. First we
compared it to NNSplice, which is a splice site predictor based
on neural networks (11; http://www.fruitfly.org/seq_tools/
splice.html). For this comparison, we used the collection of
data for human splice sites used in the GENIE system (http://
www.fruitfly.org/sequence/human-datasets.html). GeneSplicer

Table 3. False negative and false positive rates for acceptor and donor site detection for GeneSplicer, NetPlantGene and NetGene2 on the A.thaliana data set

False negatives (%) False positives (%)

(true sites missed) GeneSplicer NetGene2 (chr II data) NetPlantGene (chr II data)

Train Test

Acceptor site detection 9.5 1.9 2.5 - 4.0

15.4 1.2 1.6 1.5 -

Donor site detection 5.9 1.7 2.3 2.7 -

7.7 1.3 1.8 - 2.1

Table 4. False negative and false positive rates for acceptor and donor site detection on five equal-sized disjoint partitions of a 1115 gene human data set

True sites False Positives (%)

missed (%) Part. 1 Part. 2 Part. 3 Part. 4 Part. 5 Average

Acceptor site detection (5773 true sites) 3 7.18 10.57 13.22 7.17 8.34 9.3

5 5.31 6.90 5.64 4.94 5.97 5.8

7 4.31 5.21 4.99 3.91 5.16 4.7

8 3.76 4.78 4.43 3.64 4.71 4.3

10 3.16 4.10 3.80 3.22 4.16 3.7

15 2.34 3.12 2.55 2.13 2.89 2.6

20 1.60 2.48 2.07 1.46 2.17 1.9

40 0.50 1.40 0.73 0.56 0.92 0.8

Donor site detection (5773 true sites) 3 16.63 12.00 21.39 9.10 14.16 14.7

5 5.98 6.66 5.91 5.21 8.02 6.4

7 4.46 5.45 3.78 4.04 6.48 4.8

8 3.96 4.34 3.45 3.39 5.58 4.1

10 3.34 3.73 2.99 2.93 4.36 3.5

15 2.41 2.65 2.02 1.99 3.38 2.5

20 1.85 1.87 1.44 1.49 2.41 1.8

40 0.75 0.52 0.51 0.66 0.99 0.7
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was trained and tested using the same data as NNSplice (11),
using a training set of 1116 genes and a test set of 208 genes. The
results of GeneSplicer on the test data were compared with those
reported at the NNSplice Web site (http://www.fruitfly.org/
seq_tools/splice.html). This comparison is shown in Figure 1
for acceptor sites and Figure 2 for donors. We also included,
for comparison, the results of GeneSplicer before filtering the
splice sites whose score was not locally maximal.

For the remaining systems, we did not have access to
complete descriptions of their training and test data; therefore,
we used our own test data to compare GeneSplicer with five of
the best splice site recognition systems currently available:
NetGene2 (trained on human data) (10; http://genome.cbs.dtu.dk/

services/NetGene2/); HSPL (12,13; http://genomic.sanger.ac.uk/);
NNSplice (11; http://www.fruitfly.org/seq_tools/splice.html);
the GENIO splice site and exon predictor (14,15; http://
genio.informatik.uni-stuttgart.de/GENIO/splice/); and SpliceView
(16; http://l25.itba.mi.cnr.it/~webgene/wwwspliceview.html).
Since all five of these splice site predictors offer a Web page
where the DNA sequences may be submitted, we submitted all
1115 genes in our non-redundant human data set to each site.
We used the default parameters for each of the Web-based
predictors.

Note that, as with the Arabidopsis data, all our test data are
publicly available. Thus, it is not possible, without access to
source code for each of the other systems, to measure their
accuracy on a data set that was not included in the training
data. This restriction will tend to make the other systems look
better, since in some cases the results will be mixing accuracy
on training and test data, so we present GeneSplicer’s accuracy
on the test data as well as on the entire human data set
(including the training data set). The results are shown in
Table 5.

Table 5 shows that in comparison with three of the
systems—NNSplice, GENIO and SpliceView—GeneSplicer
has substantially lower error rates for both donor and acceptor
sites. HSPL has a false positive rate on acceptor sites that falls
in between GeneSplicer’s rate for the test set and the complete
set. Its false positive rate for donor sites is slightly better than
GeneSplicer’s rate on the complete set (2.5 versus 2.6%).
NetGene2 has a false positive rate for acceptor sites (4.6%)
that is in between GeneSplicer’s rate on the test set and the
complete set (4.9 and 3.7%, respectively), while on donor sites
it has the lowest false positive rate of all systems. Overall,
NetGene2 appears to be the best for donor site prediction,
while for acceptor sites either GeneSplicer, NetGene2 or HSPL
perform comparably. One advantage of GeneSplicer for the
latter task is that its thresholds can be adjusted by the user to
vary the false negative and false positive rates.

CONCLUSIONS

The comparison of GeneSplicer to other splice site predictors
indicates that GeneSplicer is comparable to the best predictors
for both human and plant data, and considerably better than
most systems. The comparison holds up even though our test
data probably included some genes used to train most of the
other systems in the comparison. Of the systems evaluated,
only NetGene2 and GeneSplicer are available for both human
and Arabidopsis sequences. In addition to its accuracy, an
advantage of GeneSplicer over all the other systems is its
computational efficiency. First, in terms of memory usage and
input sequence length, GeneSplicer has no discernible limits,
being able to process the entire 20 Mb sequence of chr II of
A.thaliana. All the other systems limit submissions (through
their Web sites) to a few kilobases, and locally installed
versions run so slowly that large submissions are impractical.
(The GeneSplicer code is freely available; contact the authors
for download information.) Second, in terms of speed, Gene-
Splicer surpasses all of the systems we tested. Not all systems
were available for downloading, and running through a Web
server is obviously slower than running locally, but in one
local comparison, GeneSplicer took 1 min to predict splice
sites in a 1 Mb sequence extracted from A.thaliana, while

Figure 1. False positive versus false negative rates on human acceptor sites for
GeneSplicer both with and without the local maximal score filter, and for NNSplice.

Figure 2. False positive versus false negative rates on human donor sites for
GeneSplicer both with and without the local maximal score filter, and for NNSplice.
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NetGene2 processes the same sequence in 1 h (running both
systems on a 450 MHz Pentium II Linux computer). While the
accuracy of these systems is the most important feature, Gene-
Splicer’s computational efficiency makes it much easier to run
on large DNA sequences, which are becoming increasingly
common as genome sequencing progress accelerates.
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